1,3-Diethoxy-2,4-didehydroxy-*p-tert*butylcalix[4]arene

YUHUA TING, WILLEM VERBOOM AND DAVID N. REINHOUDT

Laboratory of Organic Chemistry, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

SYBOLT HARKEMA

Laboratory of Chemical Physics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

(Received 18 October 1993; accepted 5 December 1994)

Abstract

The crystal structure of 5,11,17,23-tetrakis(*tert*-butyl)-25,27-diethoxypentacyclo[19.3.1.1^{3,7}.1^{9,13}.1^{15,19}]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23dodecaene, C₄₈H₆₄O₂, has been determined. The calix[4]arene is in the 1,3-alternate conformation. The OH-depleted phenyl rings are more coplanar with the plane of the methylene C atoms than the other two rings. Two phenyl rings show a small boat-like distortion from planarity.

Comment

Calixarenes have received considerable attention in the past decade in host-guest or supramolecular chemistry (Gutsche, 1989). The conformation of calixarenes has been studied in the solid state (Andreetti & Ugozzoli, 1991) and in solution (Groenen, van Loon, Verboom, Harkema, Casnati, Ungaro, Pochini, Ugozolli & Reinhoudt, 1991). Four basic conformations have been identified, which differ in the orientation of the phenyl rings with respect to the mean plane of the four 'connecting' methylene C atoms. The present structure determination was performed to establish the solid-state conformation of the title compound, (I), in which two phenolic

hydroxy groups have been replaced by H atoms. Other examples of solid-state structures of these so-called OHdepleted calix[4]arenes have been given by Grynszpan, Goren & Biali (1991).

Fig. 1. *PLUTO* (Motherwell & Clegg, 1978) drawing of the calix[4]arene showing the atomic numbering.

The results of this study (Fig. 2) show the molecule to have the 1,3-alternate conformation. The OHdepleted phenyl rings are more coplanar with the best plane fitted to the 'connecting' methylene C atoms [interplanar angles 24.2(2), $39.0(2)^{\circ}$] than with the other two rings [angles 90.0(2), $104.1(2)^{\circ}$], as a result of the presence of the H atoms which allow a more coplanar arrangement than the larger ethoxy groups.

The phenyl rings in this compound are almost planar [maximum deviation 0.015 (4) Å, mean deviation 0.005 Å]. The two rings that on the basis of a χ^2 test deviate significantly from planarity (C1–C6; C61– C66), have a boat-like distortion, the symmetry plane of the distortion coinciding with C1–C4 and C61– C64, respectively. The same type of distortion has been reported previously (Timmerman, Harkema, van Hummel, Verboom & Reinhoudt, 1994) and is found to be the predominant deviation from planarity in calix[4]arene structures (Harkema & Terpstra, 1995).

Fig. 2. ORTEPII (Johnson, 1976) view showing the 1,3-alternate conformation of the calix[4]arene molecule. Displacement ellipsoids are scaled to include 50% probability.

$C_{48}H_{64}O_2$

Expe	rimental				C20	-0.0815 (4)	0.4889	(3) 0.23	395 (3)	5.3 (1)
					C21	-0.2118 (4)	0.3349	(3) 0.2	705 (3)	4.2 (1)
The t	itle compound	was pre	pared from the	correspond-	C22 C23	-0.1342(4) -0.1666(4)	0.4140	(3) 0.2	143 (3)	4.0(1)
ing 1	3-dihydroxycali	x[4]arene	(Ting, Verboon	n, Groenen,	C24	-0.2335 (4)	0.3586	(3) 0.10)42 (3))69 (3)	4.0(1)
van L	oon & Reinhou	dt, 1990)	by reaction with	n KO'Bu/EtI	C25	-0.2875 (4)	0.2802	(3) 0.10	552 (3)	4.0(1)
in teti	ahydrofuran. C	olourless	crystals (m.p. 1	521–522 K)	C26	-0.2791 (4)	0.2665	(3) 0.24	462 (3)	4.1 (1)
were	obtained by rec	rystalliza	tion from a 1:1	mixture of	C27	-0.2439(4) -0.3510(6)	0.3722	(4) 0.0	1/9(3)	4.8(1)
dichlo	romethane and e	thanol.			C29	-0.2716(8)	0.4890	(5) -0.01	138 (4)	14.3(2) 11.8(3)
					C30	-0.1099 (7)	0.3312	(7) -0.03	378 (4)	12.7 (3)
Crysta	l data				C32	-0.1179 (5)	0.2458	(5) 0.38	311 (3)	7.1 (2)
с́и	0		M. K. Y.		C33	-0.0670 (7)	0.2789	(6) 0.44	425 (4)	13.3 (3)
C48H64	O_2		Mo $K\alpha$ radiation		C40 C41	-0.3448(4) -0.1361(4)	0.1803	(3) 0.3()61 (3) 163 (3)	5.0(1)
$M_r = 0$	73.0		$\lambda = 0./10/A$		C42	-0.2607 (4)	0.0701	(3) 0.30	(3)	4.1 (1)
Inclin	1 C		Cell parameters f	from 25	C43	-0.3116 (4)	-0.0124	(3) 0.35	562 (3)	4.7 (1)
<i>P</i> 1	440 (D) ⁸		reflections		C44	-0.2433 (4)	-0.1151	(3) 0.35	566 (3)	4.7 (1)
a = 10	.412 (3) A		$\theta = 7.0 - 14.1^{\circ}$		C45 C46	-0.1182(4)	-0.1314	(3) 0.29	997 (3)	4.7 (1)
b = 12	.900 (2) A		$\mu = 0.058 \text{ mm}^{-1}$		C40 C47	-0.3047(6)	-0.0508	(3) 0.24 (4) 0.41	145 (3) 166 (3)	4.2(1)
c = 16	.892 (5) A		T = 293(1) K		C48	-0.327 (1)	-0.1814	(6) 0.50)47 (4)	13.9 (3)
$\alpha = 81$.48 (3)		Parallelepiped		C49	-0.4422 (8)	-0.2072	(6) 0.41	25 (7)	23.7 (4)
$\beta = 73$	9.48 (3)°		$0.5 \times 0.4 \times 0.4$	mm	C50	-0.223 (1)	-0.3053	(5) 0.40	064 (6)	23.0 (4)
$\gamma = 79$.60 (2)°		Colourless		C60 C61	0.0699 (4)	-0.0766	(3) 0.18	307 (3)	5.7 (1)
V = 21	28 (1) Å ³				C62	0.1543 (4)	0.0091	(3) 0.16	125 (3)	4.1(1)
Z = 2					C63	0.1950 (4)	0.0314	(3) 0.05	575 (3)	4.3 (1)
$D_x = 1$	$.05 \text{ Mg m}^{-3}$				C64	0.2801 (4)	0.1055	(3) 0.01	67 (3)	4.2(1)
					C65	0.3181 (4)	0.1625	(3) 0.06	579 (3)	4.0 (1)
Data c	ollection				C60 C67	0.2808 (4)	0.1460	(3) 0.15	27 (3)	4.1 (1)
Enraf-	Nonius CAD-4		$\theta_{max} = 25.0^{\circ}$		C68	0.3280 (9)	0.0275	(4) = 0.07 (5) = 0.11	94 (4)	3.2(1)
diffr	actometer		$h = -12 \rightarrow 12$		C69	0.4771 (6)	0.1418	(6) -0.10	61 (4)	9.7 (2)
wDA s	rans		$k = 12 \rightarrow 12$ $k = -15 \rightarrow 15$		C70	0.2453 (7)	0.2178	(6) -0.11	06 (4)	14.3 (3)
Absorr	tion correction.		$k = -13 \rightarrow 13$		C72	0.2318 (7)	-0.0302	(5) 0.31	43 (3)	8.6 (2)
none			$i = 0 \rightarrow 20$	•	C73	0.173 (1)	-0.0404	(8) 0.40	036 (4)	15.0 (4)
7425 m	, annurad raflaati		5 standard reliect		00	0.3338 (4)	0.2062	(3) 0.20	137 (3)	4.9(1)
7425 1	dependent refle	otiona	intequency: 60	min • 407						
2200 0	hopendent reflection		intensity decay	: 4%						•
55900	2 - (D)	ms			Ta	ble 2. Sele	cted geom	etric paraı	neters	'(Å, °)
[1 >	$5\sigma(I)$				031—C21		1.375 (6)	C27—C30		1,498 (7)
D . C					O31—C32		1.433 (6)	C32—C33		1.44 (2)
Kejinei	neni				071—C61		1.388 (5)	C40—C42		1.529 (5)
Refine	ment on F		$(\Delta/\sigma)_{\rm max} = 0.19$		071-C72		1.418 (7)	C41—C42		1.376 (6)
R = 0.0	070		$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ A$	A ⁻³	C1-C2 C1-C6		1.378 (5)	C41 - C40 C42 - C43		1.394 (5)
wR = 0	0.080		$\Delta \rho_{\rm min} = -0.19 \ {\rm e}$	Å ⁻³	C2—C3		1.381 (7)	C43C44		1.387 (6)
S = 2.3	8		Extinction correc	tion: none	C2—C80		1.506 (5)	C44—C45		1.384 (5)
3390 r	eflections		Atomic scattering	factors	C3C4		1.386 (5)	C44—C47		1.515 (6)
451 pa	rameters		from Internation	onal Tables	C4-C3		1.385 (6)	C45-C46		1.382 (6)
All H-	atoms treated as	riding	for X-ray Crys	tallography	C5—C6		1.383 (7)	C47—C48		1.50(1)
atom	IS	U	(1974, Vol. IV)	C6—C20		1.513 (6)	C47—C49		1.46 (1)
w = 1/6	$\sigma^2(F)$		(, ,	C7—C8		1.523 (7)	C47—C50		1.433 (8)
•					C7-C9		1.497 (6)	C60—C62		1.513 (6)
					C20-C22		1.504 (7)	C61-C62		1.380 (8)
Table 1. Fractional atomic coordinates and equivalent			C21—C26		1.391 (7)	C62—C63		1.375 (6)		
isotropic displacement parameters $(Å^2)$			C21—C22		1.382 (6)	C63C64		1.392 (6)		
son opro anopracontent parameters (A)			C26—C25		1.379 (7)	C64-C65		1.390 (8)		
	$B_{\rm eq} = (8)$	$(8\pi^2/3)\Sigma_i\Sigma_i$	$C_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$.		C25-C24		1.308 (6)	C64-C67 C65-C66		1.530 (6)
	r	ν	7	R	C24—C23		1.392 (7)	C66—C80		1.507 (7)
O31	-0.2077(3)	0.3305 (3)	0,3516 (2)	6.27 (9)	C24—C27		1.520 (7)	C67—C68		1.517 (9)
	0.2011 (3)									
071	0.1558 (3)	0.0545 (2)	0.2759 (2)	5.60 (9)	C23—C22		1.379 (7)	C67—C69		1.524 (7)
071 C1	0.1558 (3) 0.1293 (4)	0.0545 (2) 0.3509 (3)	0.2759 (2) 0.2173 (3)	5.60 (9) 3.7 (1)	C23—C22 C27—C28 C27—C29		1.379 (7) 1.485 (9) 1.526 (7)	C67—C69 C67—C70 C72—C73		1.524 (7) 1.496 (9)

			•	
	x	у	z	Bea
O31	-0.2077 (3)	0.3305 (3)	0.3516 (2)	6.27 (9)
071	0.1558 (3)	0.0545 (2)	0.2759 (2)	5.60 (9)
Cl	0.1293 (4)	0.3509 (3)	0.2173 (3)	3.7 (1)
C2	0.2612 (4)	0.3155 (3)	0.2220 (3)	3.7 (1)
C3	0.3276 (4)	0.3820 (3)	0.2481 (3)	4.2 (1)
C4	0.2669 (4)	0.4821 (3)	0.2702 (3)	3.8(1)
C5	0.1336 (4)	0.5125 (3)	0.2673 (3)	4.1 (1)
C6	0.0637 (4)	0.4487 (3)	0.2410 (3)	3.8 (1)
C7	0.3450 (4)	0.5522 (3)	0.2991 (3)	4.8 (1)
C8	0.4800 (6)	0.5613 (5)	0.2349 (5)	10.8 (2)
C9	0.2725 (6)	0.6627 (4)	0.3090 (4)	11.3 (2)
C10	0.3803 (7)	0.5011 (5)	0.3757 (4)	13.5 (2)

C1—C6	1.378 (5)	C42—C43	1.374 (6)
C2—C3	1.381 (7)	C43C44	1.387 (6)
C2—C80	1.506 (5)	C44—C45	1.384 (5)
C3C4	1.386 (5)	C44—C47	1.515 (6)
C4—C5	1.385 (6)	C45—C46	1.382 (6)
C4—C7	1.530(7)	C46—C60	1.506 (6)
C5—C6	1.383 (7)	C47—C48	1.50(1)
C6—C20	1.513 (6)	C47—C49	1.46 (1)
C7—C8	1.523 (7)	C47—C50	1.433 (8)
С7—С9	1.497 (6)	C60—C62	1.513 (6)
C7—C10	1.475 (9)	C61—C62	1.386 (8)
C20-C22	1.504 (7)	C61-C66	1.390 (6)
C21—C26	1.391 (7)	C62—C63	1.375 (6)
C21—C22	1.382 (6)	C63C64	1.392 (6)
C26—C25	1.379 (7)	C64C65	1.390 (8)
C26—C40	1.508 (6)	C64—C67	1.530 (6)
C25—C24	1.380 (5)	C65—C66	1.369 (7)
C24—C23	1.392 (7)	C66—C80	1.507 (7)
C24—C27	1.520(7)	C67—C68	1.517 (9)
C23—C22	1.379(7)	C67—C69	1.524 (7)
C27—C28	1.485 (9)	C67—C70	1.496 (9)
C27—C29	1.526 (7)	C72—C73	1.455 (9)
C21-031-C32	117.6 (3)	C26-C40-C42	115.1 (3)
C61—071—C72	115.6 (3)	C42-C41-C46	120.6 (4)
C2-C1-C6	121.0 (4)	C40-C42-C41	122.2 (4)
C1—C2—C3	118.6 (3)	C40—C42—C43	118.9 (3)
C1—C2—C80	123.3 (4)	C41—C42—C43	119.0 (4)
C3—C2—C80	118.1 (4)	C42—C43—C44	122.9 (4)
C2-C3C4	122.3 (4)	C43—C44—C45	116.5 (4)
C3C4C5	117.0 (4)	C43C44C47	120.9 (4)

C3C4C7	120.1 (4)	C45-C44-C47	122.6 (4)
C5C4C7	122.9 (3)	C44-C45-C46	122.7 (4)
C4C5C6	122.5 (4)	C41-C46-C45	118.3 (3)
C1-C6-C5	118.6 (4)	C41-C46-C60	122.1 (3)
C1-C6-C20	122.7 (4)	C45-C46-C60	119.4 (3)
C5-C6-C20	118.7 (3)	C44—C47—C48	110.5 (6)
C4C7C8	109.4 (4)	C44-C47-C49	111.2 (5)
C4-C7-C9	113.2 (4)	C44—C47—C50	113.4 (5)
C4-C7-C10	110.1 (5)	C48-C47-C49	102.3 (7)
C8-C7-C9	106.7 (4)	C48-C47-C50	107.8 (7)
C8-C7-C10	105.3 (5)	C49-C47C50	111.1 (7)
C9-C7-C10	111.8 (5)	C46C60C62	118.6 (4)
C6-C20-C22	116.2 (3)	O71-C61-C62	120.3 (4)
O31-C21-C26	121.3 (4)	O71—C61—C66	118.6 (4)
O31—C21—C22	118.1 (4)	C62-C61-C66	121.1 (4)
C26-C21-C22	120.4 (4)	C60-C62-C61	122.4 (5)
C21-C26-C25	118.3 (4)	C60-C62-C63	119.4 (5)
C21C26C40	121.9 (4)	C61C62C63	118.1 (4)
C25C26C40	119.9 (4)	C62—C63—C64	123.4 (5)
C26C25C24	123.7 (4)	C63C64C65	115.4 (4)
C25C24C23	115.7 (4)	C63C64C67	122.9 (5)
C25-C24-C27	122.8 (4)	C65—C64—C67	121.7 (4)
C23-C24-C27	121.5 (4)	C64-C65-C66	123.8 (4)
C24—C23—C22	123.0 (4)	C61-C66-C65	118.1 (4)
C20C22-C21	121.1 (4)	C61-C66-C80	121.4 (4)
C20-C22-C23	120.0 (4)	C65C66C80	120.5 (4)
C21—C22—C23	118.8 (4)	C64C67C68	112.2 (5)
C24C27C28	113.6 (4)	C64C67C69	111.5 (5)
C24C27C29	111.6 (4)	C64—C67—C70	110.5 (4)
C24C27C30	109.2 (4)	C68—C67—C69	104.3 (5)
C28-C27-C29	107.6 (5)	C68-C67-C70	109.6 (6)
C28-C27-C30	109.5 (5)	C69-C67-C70	108.7 (5)
C29—C27—C30	105.0 (5)	O71—C72—C73	110.0 (5)
O31—C32—C33	110.8 (6)	C2-C80-C66	117.7 (4)

Data were collected with a scan width of $(1.10 + 0.34\tan\theta)^\circ$. The intensity data were corrected for Lorentz and polarization effects, and for long-time scale variation.

The structure was solved by *MULTAN* (Germain, Main & Woolfson, 1971) and refined by full-matrix least squares. All calculations were performed with *SDP* (B. A. Frenz & Associates Inc., 1983). An *ORTEPII* (Johnson, 1976) view (Fig. 2) shows rather large thermal motion for the terminal CH₃ and CH₂ groups which may affect the *R* value.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1130). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Andreetti, G. D. & Ugozzoli, F. (1991). Solid State Studies on Calixarenes. In Calixarenes, a Versatile Class of Macrocyclic Compounds, edited by J. Vicens & V. Böhmer. Dordrecht: Kluwer Academic Publishers.
- B. A. Frenz & Associates Inc. (1983). Structure Determination Package. College Station, Texas, and Enraf-Nonius, Delft, The Netherlands.
- Germain, G., Main, P. & Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
- Groenen, L. C., van Loon, J.-D., Verboom, W., Harkema, S., Casnati, A., Ungaro, R., Pochini, A., Ugozolli, F. & Reinhoudt, D. N. (1991). J. Am. Chem. Soc. 113, 2385–2392.
- Grynszpan, F., Goren, Z. & Biali, S. E. (1991). J. Org. Chem. 56, 532-536.
- Gutsche, C. D. (1989). In *Calixarenes, Monographs in Supramolecular Chemistry*, Vol 1, edited by J. F. Stoddart. Cambridge: The Royal Society of Chemistry.

Harkema, S. & Terpstra, M. (1995). In preparation.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Timmerman, P., Harkema, S., van Hummel, G. J., Verboom, W. & Reinhoudt, D. N. (1994). J. Incl. Phenom. 16, 189–197.
- Ting, Y., Verboom, W., Groenen, L. C., van Loon, J.-D. & Reinhoudt, D. N. (1990). J. Chem. Soc. Chem. Commun. pp. 1432–1433.

Acta Cryst. (1995). C51, 1467-1470

A Tautomeric Pair of 2,2-Dimethyl-6-carbamoyl-9-phenyldihydropurines

BRIAN BEAGLEY, BRIAN L. BOOTH, PAUL R. EASTWOOD, STÉPHANE KIEGER AND ROBIN G. PRITCHARD

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 10D, England

M. JOSÉ ALVES, ALICE CARVALHO AND M. FERNANDA J. R. P. PROENÇA

Department of Chemistry, University of Minho, 4700 Braga, Portugal

(Received 4 July 1994; accepted 13 April 1995)

Abstract

Two tautomeric dihydropurine derivatives, $C_{14}H_{15}N_5O$, namely 2,2-dimethyl-9-phenyl-1,2-dihydropurine-6carboxamide, (A) (coloured orange-red), and 2,2dimethyl-9-phenyl-2,3-dihydropurine-6-carboxamide, (B) (yellow), are confirmed to have hydrogen substituents at N1 and N3, respectively. A different pattern of observed bond lengths in the purine rings of (A) and (B) illustrates differences in conjugation in accordance with the different bond alternation. The tautomerism also gives rise to differences in the hydrogen bonding, although both tautomers have an internal hydrogen bond from an amide N—H to an N atom of the five-membered ring, with N···N distances 2.84 (2) Å in (A) and 2.836 (6) Å in (B).

Comment

The two structures were determined primarily to establish the relationship between the colour and the tautomeric form, and also to establish which is the major tautomer in solution. The compounds were synthesized